Is two better than one? Examining auditory, visual, and dual encoding processes on phonological working memory performance in children with ADHD

Dustin E. Sarver1, Michael J. Kofler2,3, Paula A. Aduen2, Erin Lunsford2, Suzanna Gluck2, Emma Petkofsky2, Lauren Benoit2, Ali Macasae2 & Florence Thompson2

1University of Mississippi Medical Center 2University of Virginia 3Florida State University

Introduction

- ADHD is associated with working memory difficulties and variable performance (1, 2).
- In children with ADHD, phonological WM deficits are large, predicting many learning-related outcomes (3).
- Most studies of phonological WM performance in ADHD use tasks requiring that to-be-recalled material be encoded via auditory input, most commonly using digit span tasks (1).
- However, because material may also be encoded into phonological WM through visual encoding or dual (simultaneous auditory + visual input) encoding inputs, the impact of these different encoding presentations may impact phonological WM.

Present Study

- The current study is the first to examine the extent to which different encoding modalities (auditory, visual, or their combination) influence ADHD-related PHWM performance and performance variability.

Method

Participants

- N = 22 aged 8-13 years
- Children (10 female, 15 male) with diagnosis of ADHD based on:
 - Independent diagnostic using K-SADS semi-structured interview with parent
 - Parent and teacher ratings ≥ 1 SDs on BASC-2 Attention Problems and/or Hyperactivity Scale OR
 - Excluding parent/teacher criterion score on Child Symptoms Inventory-IV
- ADHD Presentations (14 Combined, 8 Inattentive, & 3 Hyperactive / Impulsive)
- Exclusion: Neurological impairment, seizures, psychosis, or WASI VCI IQ < 85 (Table 1)

Primary Measures

- Three conditions of a phonological WM task similar to the WISC-IV Letter-Number Sequencing. All tasks were counterbalanced. Stimuli presented at 1 sec intervals. All conditions identical except encoding presentation.
 - 1) Auditory Encoding: Stimuli presented auditorily using pre-encoded stimuli
 - 2) Visual Encoding: Stimuli presented as alpha-numeric numbers in center of screen
 - 3) Dual Encoding: Stimuli presented from Auditory and Visual encoding conditions simultaneously
- Conditions administered at four set sizes (3, 4, 5, 6). Each set size included 12 trials presented in ascending order.
- Tasks administered at 4 unique set sizes (3, 4, 5, 6) for a total of 48 trials.

Dependent Variables

- Phonological working memory performance
 - Number of stimuli correctly recalled per trial
- Phonological working memory performance variability

Analyses

- Preliminary analyses
 - Repeated-measures ANOVAs with LSD-post hoc
 - Effect size contrasts (See Tables 2 and 3)

Results

- Variability in phonological working memory performance as a function of encoding modality and set size

Discussion

- Presentation of encoding modality impacts phonological working memory performance in ADHD.
- Auditory encoding associated with poorest WM performance, particularly at high cognitive loads.
- Visual and Dual encoding show similar performance patterns, but Dual presentation decreases variability in phonological WM performance.
- Has implications for assessing phonological WM and treatment recommendations focused on decreasing performance variability.

References