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Abstract

Recent studies have shown that the neural regulation of pair bonding in the monogamous prairie vole (Microtus ochrogaster) is similar to that
of drug seeking in more traditional laboratory rodents. Therefore, strong interactions between social behavior and drug reward can be expected.
Here, we established the prairie vole as a model for drug studies by demonstrating robust amphetamine-induced conditioned place preferences in
this species. For both males and females, the effects of amphetamine were dose-dependent, with females being more sensitive to drug treatment.
This study represents the first evidence of drug reward in this species. Future studies will examine the effects of social behavior on drug reward
and the underlying neurobiology of such interactions.
© 2007 Elsevier Ireland Ltd. All rights reserved.
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There are many factors that contribute to drug abuse. Included
among these are genetic predisposition and drug availability,
variables that have been well modeled with traditional labo-
ratory rodents and that have been shown to greatly influence
drug seeking behavior [1,17,22,59]. However, there are other
complexities known to influence drug taking in humans, such
as social environment [31]. This variable is more difficult to
study in the laboratory because traditional rodent subjects do not
exhibit social organization analogous to that shown by humans
[4]. Studies in non-human primates demonstrate the importance
of social hierarchy on drug taking [39]. However, primate exper-
iments are not practical for most laboratories and therefore
understanding the neurobiology of interactions between social
behavior and drug abuse would be greatly facilitated if it were
studied in rodent models. Here, we have taken an initial step
toward this end by establishing a highly social rodent species,
the monogamous prairie vole (Microtus ochrogaster), for drug
studies.

The prairie vole is a powerful model for studies of social
attachment [13,23]. Males and females of this species show
preferential mating with one partner [20], exhibit high levels
of parental behavior [36–38,43], and form enduring pair bonds,
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which are maintained even if one member of the pair is lost
[57]. Pair bond formation is routinely studied in the laboratory
by using a partner preference test [60,61] and such studies have
provided excellent insight into the neural regulation of pair bond-
ing [62]. In particular, recent studies have shown that pair bond
formation and maintenance critically depend on key components
of brain reward circuitry, including the nucleus accumbens and
ventral pallidum [2,3,24,33–35]. These brain regions are critical
for processing information about other natural rewards, such as
food and sex [9,29,46,47], and this circuitry is a primary target
of all drugs of abuse [42].

Given that pair bonding and drug reward involve the same
neural systems, there is likely to be significant interaction
between social behavior and drug seeking. To facilitate investi-
gation of these interactions we have established the prairie vole
as a viable model for drug studies by establishing amphetamine
(AMPH) induced conditioned place preferences (CPP) in this
species. Our data show that AMPH dose dependently induced
CPP in both males and females, and that females are more sensi-
tive to drug treatment. These findings provide the foundation for
future studies focused on the interaction between pair bonding
and drug reward.

Subjects were sexually naive male (n = 37) and female
(n = 36) prairie voles from a laboratory breeding colony. At 21
days of age, subjects were weaned and housed in same-sex sib-
ling pairs in plastic cages (12 cm high × 28 cm long × 16 cm
wide). Water and food were provided ad libitum, a 14:10
light–dark cycle was maintained, and the temperature was
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approximately 20 ◦C. All subjects were between 80 and 120 days
of age when tested and weighed between 35 and 50 g. Experi-
mental procedures were approved by the Animal Care and Use
Committee at Florida State University and were carried out in
accordance with the National Institute of Health Guide for the
Care and Use of Laboratory Animals (NIH Publications No.
80-23).

Subjects were initially pre-tested in a two-chambered
place preference apparatus for 30 min. This apparatus con-
sisted of a black plastic cage (20 cm × 25 cm × 45 cm) with a
solid metal lid and an otherwise identical white plastic cage
(20 cm × 25 cm × 45 cm) with a wire mesh lid. The wire mesh
lid permitted more light into the white cages compared to the
solid metal lids used for black cages, which created a darker
environment. At the start of the pre-test, one half of the subjects
were initially placed in the white cage, the other half were ini-
tially placed in the black cage (this same procedure was used
at the start of the CPP test). Cages were connected by a plastic
tube (7.5 cm × 16 cm) that allowed the animal to move freely
between the two chambers. Cage crosses and time spent in each
cage were measured by photobeam breaks with a locomotor
analysis program (Ross Henderson, FSU). The objective of the
pre-test was to determine whether there was an inherent prefer-
ence for either the black or white cage. Surprisingly, pilot tests
with males suggested that this species preferred the white cage.
We therefore attempted to reverse this preference by pairing the
black cage environment with AMPH; i.e. a biased test.

One day after the pre-test, one half of the subjects received
introperitoneal (IP) injections of saline and was placed in a white
cage with a wire mesh lid for 2 h. The remaining subjects were
given saline with either 0.1, 0.5, 1.0 or 3.0 mg/kg d-amphetamine
sulfate and placed in a black cage with a solid metal lid, also for
2 h. Conditioning sessions consecutively alternated for 8 days,
thus providing 4 associative pairings for saline and AMPH. On
the day immediately following the final day of conditioning, sub-
jects in a drug-free state were given access to the place preference
apparatus for 30 min. Pre-tests, conditioning sessions, and con-
ditioned place preference tests were all conducted during the
light phase; between 10:00 and 14:00 h.

A CPP was defined by the change in duration of the time
spent in the AMPH-paired cage before and after conditioning
[5]. Here, we present data as percent changes from the pre-test for
both AMPH and saline treatment: total time spent in the AMPH
(or saline) cage after conditioning divided by total time spent
in the AMPH (or saline) cage before conditioning (i.e. the pre-
test), multiplied by 100. Paired samples t-tests were performed
to determine whether there were significant differences in time
spent in the AMPH-paired cage before and after conditioning.
Since an increase in the AMPH-paired cage was expected, one-
tailed tests were used to determine p-values.

Consistent with our pilot testing, males showed significantly
more time spent in the white cage (16.7 ± 1.2 min) compared
to the black cage (11.7 ± 1.1 min) following control condition-
ing with saline injections (t = 4.29; p < 0.05) (Fig. 1a). Thus, the
non-preferred cage served as the AMPH-paired environment in
subsequent experiments in an attempt to reverse this preference.
A low dose of AMPH (0.1 mg/kg) resulted in no preference for

Fig. 1. Amphetamine induced conditioned place preference in male and female
prairie voles. (a) For males, control subjects (n = 5) showed an inherent prefer-
ence for the environment that would subsequently serve as the saline environment
(open bar). AMPH conditioning at 0.1 mg/kg (n = 8) failed to induce CPP. Higher
doses (0.5 mg/kg: n = 8; 1.0 mg/kg: n = 8; and 3.0 mg/kg: n = 8) induced robust
CPP—animals spent significantly more time in the drug paired environment
(filled bar). (b) For females, controls showed no inherent environmental prefer-
ence. Low dose administration of AMPH (0.1 mg/kg; n = 8) resulted in a trend
toward a preference for the drug paired environment, whereas 0.5 mg/kg (n = 8)
induced a robust CPP. Higher doses of AMPH (1.0 mg/kg: n = 7 and 3.0 mg/kg:
n = 6) failed to induce CPP. Difference scores were based on the pre-test data from
each individual subject. * = p < 0.05; � = p < 0.10; error bars indicate standard
error from the mean.

either environment (t = 0.78; p > 0.2) (Fig. 1a). However, condi-
tioning with higher doses of AMPH (0.5–3.0 mg/kg), in males,
resulted in robust preferences for the drug-paired environment
(t = 2.49, 2.11, and 4.95, respectively; p < 0.05) (Fig. 1a).

Female prairie voles showed no inherent preference for either
chamber, as there was no preference for either chamber follow-
ing control conditioning with saline (t = 0.52; p > 0.3) (Fig. 1b).
Low dose administration of AMPH (0.1 mg/kg) resulted in
a trend toward a preference for the drug paired environment
(t = 1.60; p = 0.07), whereas 0.5 mg/kg induced a robust CPP
(t = 4.07; p < 0.05) (Fig. 1b). Unlike males, higher doses of
AMPH (1.0 and 3.0 mg/kg) failed to induce CPP (t = 1.25 and
0.59, respectively; p > 0.1) (Fig. 1b).

Given that higher doses of AMPH (1.0 and 3.0 mg/kg)
induced CPP in males but not females, and the lowest dose of
AMPH (0.1 mg/kg) appeared to be more effective in females, it
would seem that females are more sensitive to drug treatment
compared to males. These differences are not due to differences
in activity levels since there was no difference between males
and females in the number of cage entries in the CPP appa-
ratus (males 22.2 ± 1.4; females 20.1 ± 1.3; mean ± standard
error). Further, locomotor activity did not change before and
after conditioning for either males or females (Table 1).
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Table 1
Number of cage crosses within a two chambered place preference apparatus prior to conditioning (pre-test) and after conditioning (CPP)

AMPH 0 mg/kg 0.1 mg/kg 0.5 mg/kg 1.0 mg/kg 3.0 mg/kg

Pre-test CPP Pre-test CPP Pre-test CPP Pre-test CPP Pre-test CPP

Males 23.2 ± 2.4 26.4 ± 2.5 19.8 ± 3.0 19.6 ± 7.5 27.5 ± 3.0 20.4 ± 4.3 23.1 ± 3.0 20.6 ± 3.6 21.0 ± 2.9 22.4 ± 4.6
Females 19.0 ± 5.7 19.9 ± 2.5 24.0 ± 3.1 16.1 ± 2.4 28.0 ± 6.7 16.1 ± 6.1 23.4 ± 3.4 27.9 ± 3.2 12.6 ± 3.4 12.3 ± 1.5

There is no difference in locomotor activity between males and females. There is also no difference in locomotor activity following conditioning for either sex.

This study represents the first demonstration of drug reward
in the monogamous prairie vole. Similar to other rodent species,
AMPH-induced CPP in prairie voles is dose dependent [5,58].
The majority of studies of AMPH-induced CPP have been con-
ducted with male rats, and these studies show that the most
effective doses of AMPH fall between 0.3 and 3.0 mg/kg [25,55],
a range consistent with the current results from male prairie
voles. For males, the highest dose used (3.0 mg/kg) appears to
be less effective than median doses (0.5 and 1.0 mg/kg). This is
consistent with studies showing that higher doses of AMPH are
less effective, or in fact, aversive [11].

For females, the dose response was shifted leftward, with the
lowest dose used (0.1 mg/kg) showing a trend toward CPP and
higher doses, that were effective in males (1.0 and 3.0 mg/kg),
failing to induce CPP. This is consistent with previous studies
in other species which showed that females were more sen-
sitive to psychostimulants [7,49]. Similar leftward shifts have
been shown for AMPH-induced CPP in female mice [16,32] and
cocaine-induced CPP in female rats [51]. AMPH and cocaine
also cause greater behavioral sensitization as well as greater
increases in dopamine release within the striatum and nucleus
accumbens in female rats [6]. Our study, therefore, provides
additional evidence that females, in general, are more sensitive
to drug effects than males [50].

A major contributor to sex differences in psychostimu-
lant sensitivity in rats is serum estrogen levels [12]. Females
are most sensitive during estrous and exogenous estrogen
also increases AMPH-induced behaviors and AMPH-induced
dopamine release in the nucleus accumbens [7,8]. However,
prairie voles are induced ovulators [14,27], and have low basal
levels of serum and brain estradiol [53]. Low basal estradiol
may explain why sex differences in this species are not more
pronounced, as it is consistent with studies in rats, showing that
while ovariectomized females are still more sensitive to AMPH
than males, but the differences are less robust than the ones with
intact estrus cycles [8].

Other hormone systems may also contribute to sex dif-
ferences in the sensitivity to psychostimulants. For example,
corticosterone (CORT) plays an important role in mediating
drug reward [48] and adrenalectomy removes sex differences
in AMPH-induced CPP in rats [51]. Prairie voles have very high
levels of serum CORT compared to traditional laboratory rodents
[56] and males and females differ significantly in changes in
CORT levels in response to a variety of treatments [18]. Fur-
ther, genetic differences between males and females [19] may
also contribute to sensitivity to drug treatment. Future studies
are needed to address the underlying biology of sex differences
to drug treatment in prairie voles.

Establishing the prairie vole for drug studies provides the
foundation for future investigations of interactions between pair
bonding and drug reward. While it has been known for over
two decades that maternal bonding is dependent on opioid sig-
naling [44], the role of opiates in monogamous pair bonding
is largely unknown [54]. However, a detailed understanding of
dopamine regulation of pair bonding has emerged [3] and it is
very intriguing that pair bonding and self-administration of psy-
chostimulants have similar neural mechanisms [3,52]. This is
consistent with the notion that abused drugs potently control
behavior because they usurp brain circuitry evolved to mediate
behavior essential for survival [10,21,28,41], including social
bonding [15,26,45]. In fact, it has been suggested that individu-
als with impoverished social environments may be more likely
to artificially stimulate these neural pathways [40,45] and that
social support may reduce addictive urges [44]. This is supported
by studies showing that a positive social environment is bene-
ficial for recovery from drug addiction [30,31]. Future studies
will directly test if pair bonded voles are ‘protected’ against drug
reward and hopefully improve treatment and prevention of drug
addiction.
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